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ABSTRACT: 
 
Recent developments in airborne sensor technologies have led to not only improved mapping performance, but have opened up a 
series of new applications. Enhanced spatial and temporal resolution can now allow for effectively detecting and describing moving 
objects for the first time. Vehicles, moving or standing, used to be problematic during the traditional mapping process; they needed 
to be detected and removed during the surface and/or object extraction process. From a traffic monitoring and management 
perspective, however, these objects are of high interest. The number of vehicles, their location and velocity as well as additional 
properties, such as vehicle type, size or weight, represents the essential base data for traffic flow description and modeling. Research 
has shown that vehicles can be extracted, counted and tracked from image sequences and that LiDAR data can provide an effective 
coarse categorization of vehicles in a highly automated way. 
 
An analysis of the performance on the traffic flow estimation process for a typical state-of-the-art airborne sensor suite, composed of 
a LiDAR and a digital camera is presented. To assess the absolute performance, a dedicated test flight over a calibration range was 
conducted. The test area had specific ground targets that are equally identifiable and can be accurately positioned in both LiDAR 
data and imagery. In addition, a moving target was used to assess the size measuring performance of the moving object extraction 
process. The results confirmed that high-performance airborne sensors can provide quality data for traffic flow information 
extraction. 
 

 
1. INTRODUCTION 

Transportation represents a major segment of the world’s 
economy, and as such must be carefully monitored and 
planned. This requires the most up-to-date, accurate and 
continuous methods for screening and mapping for effective 
modeling and management. Traditionally, permanent 
installations provide mostly real time information usually 
gathered from many diverse sources, such as electronic 
sensors in the pavement (loop detectors), road tubes, ramp 
meter sensors, and video and digital cameras. Data from 
these sensors are sent to the traffic management center at 
various times. Most of this information is only recorded; a 
small part of it is analyzed in real-time and used for 
immediate traffic control and decision-making. Furthermore, 
the installation and use of ground-based sensors disrupts 
traffic and endangers the crews. The major focus of this 
research effort, in general, is to improve the efficiency of the 
transportation system by the integration of remotely sensed 
data with the traditional ground data to monitor and manage 
traffic flows. 
 
The National Consortium for Remote Sensing in 
Transportation-Flows (NCRST-F), led by The Ohio State 
University, and sponsored by the U.S. Department of 
Transportation and NASA, was established in 2001. Our 
partners in NCRST-F are the University of Arizona and 
George Mason University. As mentioned earlier, the major 
focus of the OSU research team is to improve the efficiency 
of the transportation system by the integration of remotely 
sensed data with traditional ground data to monitor and 
manage traffic flows. Our research team is concerned with 
the vehicle extraction and traffic pattern modeling based on 
airborne digital data that is collected by medium-format 
frame cameras and LiDAR systems. This paper is an 

extension of our earlier publications, where theoretical and 
practical studies on the feasibility of using LiDAR data and 
airborne imagery collected over the transportation corridors 
for estimation of traffic flow parameters, were presented.  
 
The driving force behind this research effort is opportunity 
mapping. A fairly large percentage of geospatial data 
acquisition is done over urban areas with a substantial road 
network, where the vehicles become obstacles that need to be 
removed. In particular this is the case for road surface and/or 
road infrastructure mapping. This information should not be 
discarded, however, but rather the data should be directly 
converted to traffic flow data. Collecting data over the 
transportation corridors during regular surveys offers a 
unique opportunity to obtain important data for transportation 
planners and managers at practically no additional cost. Data 
can be acquired also in transit while the system is flown 
between various mapping jobs. Medium format cameras have 
become standard companion sensors for LiDAR, providing 
simultaneous visual image coverage and thus this imagery 
can be also used to support traffic flow extraction.  
 
In this contribution the actual example of traffic flow 
estimation, along with performance validation obtained from 
high-accuracy datasets collected in late 2005 in Ohio, USA is 
presented.  In particular, vehicle extraction, velocity 
estimation supported by fusion of LiDAR and image data, as 
primary parameters describing the traffic flow, are discussed 
and analyzed. 
 

2. TRAFFIC FLOW 

For highway planning and traffic management purposes, 
each road segment is characterized by its traffic flow. Flow 
can be defined as the number of vehicles passing a given 



 

point on a highway during a given period of time, such as 
vehicles per hour. Flow is one of the primary elements of 
traffic stream description besides density and speed. The 
three basic parameters of traffic stream are related to each 
other by the following relation: flow is the product of speed 
and density. The two basic types of mathematical models for 
describing traffic flow are the macroscopic and microscopic 
models. While macroscopic models are concerned with 
describing the flow-density relationship for a group of 
vehicles, microscopic models describe the flow by tracking 
individual vehicles using car-following logic. The 
relationship between flow and density is frequently used in 
freeway traffic management to control the density in an 
effort to optimize productivity (flow). The relationship 
between speed and flow could be used for design purposes, 
as it defines the trade-off between the level of service on a 
road facility (as expressed by the speed) and the productivity 
(as defined by the flow). Traffic control is aimed at 
managing and controlling the movement of traffic on streets, 
highways, and freeways in an attempt to optimize the use of 
such facilities. Traffic control service, in general, is 
responsible for collecting real-time traffic data from the field 
and then processing the data into useful information 
(Chowdhury and Sadek, 2003). 
 
Traffic flow is a generic term used to describe vehicle 
movement and volume over a transportation network. Two of 
the most important traffic measures produced by state DOTs 
and other transportation agencies around the world are 
AADT and VMT (Pline Ed., 1992). Average annual daily 
traffic (AADT) is produced to represent the vehicle flow over 
a highway segment on an average day of the year. Vehicle 
miles traveled (VMT) indicates travel over the entire 
highway system and is used to indicate mobility patterns and 
travel trends. VMT is also used as an indicator for allocation 
of highway resources. Flow data are generally obtained by 
ground-based equipment, such as loop detectors or road tubes, 
which are fixed to a location and are deployable as needed. 
In the latter case, the sample data are collected from road 
tubes placed in the traveled portion of the road, disrupting 
traffic and endangering the crews when placing or collecting 
the tubes. Using satellites and air-based platforms, the 
survey/control crews can cover large areas, access remote 
highways, and carry sensors that can collect data from safe 
and non-disruptive off-the-road locations. The imagery 
collects “snapshots” of traffic over large areas at an instant of 
time or a sequence of snapshots over smaller areas, whereas 
traditional data collection observes vehicles at a point on the 
highway over much longer time intervals (McCord et al., 
2003).  
 

3. TRAFFIC FLOW FROM AIRBORNE SENSORS 

The idea of using remote sensing for obtaining traffic flow 
data comes from two directions. First, a demand for finding 
new data sources to support and improve traffic flow 
monitoring and management inspired a research initiative on 
using remote sensed data in transportation.  Second, the 
transition of the last few years from analog airborne imaging 
systems to fully digital multi-sensory imaging suites 
supported by high-performance direct georeferencing has 
provided the enabling technology needed for effective 
detection of moving targets. 
 
Initial research focused on extracting traffic flow data from 
aerial and satellite imagery, see (Toth et al., 2003b; Merry et. 

al, 1999; Grejner-Brzezinska and Toth, 2002 and 2003b). 
Later, theoretical and practical studies were carried out on 
the feasibility of using LiDAR data to obtain traffic flow 
estimates, see (Toth et. al, 2003a and 2004; Ramprakash 
2003; Grejner-Brzezinska and Toth, 2003a). These papers 
describe methods for vehicle detection, extraction, and 
tracking from both imagery and LiDAR, which form the 
basis for traffic flow parameter estimation, such as vehicle 
count, classification and vehicle velocity estimates. 
 

3.1  Flow Data from LiDAR  
 
A LiDAR point cloud offers explicit three-dimensional 
information of the object space and consequently provides an 
excellent basis for shape-based feature extraction. 
Furthermore, road surfaces have simple geometry and to 
some extent that applies to the vehicles; therefore, the vehicle 
extraction not only can be automated, but it can be done at a 
rather high performance level. Typically, a vegetation 
canopy over roads could pose some difficulty, although 
multiple returns from the LiDAR pulse can mitigate this 
problem. Obviously, the LiDAR point density plays a key 
role in the vehicle extraction performance and all the follow-
on processing steps. Extended experiments proved that from 
2-3 points/m2 density, the vehicle extraction becomes robust 
and there is not much improvement beyond 5 points/m2. A 
vehicle at 7 points/m2 is shown in Figure 1. For vehicle 
classification, the situation is different, as the higher point 
density is essential to differentiate among vehicle categories. 
At the 2-5 points/m2 density range, only major vehicle 
classes, such as cars, trucks and the remaining other vehicles 
could be classified at an acceptable success rate (Toth and 
Grejner-Brzezinska, 2004b). The 15-20 vehicle category 
based classification used by most transportation agencies 
requires substantially higher densities that is not routinely 
achieved in current airborne LiDAR practice (terrestrial laser 
scanning can easily provide that point density). The velocity 
of vehicles can be estimated from the motion artifact in 
LiDAR data due to the scanning pattern and the relative 
velocity of the sensor and the moving targets. The difficulty 
is that the true vehicle size is unknown and only the class 
mean or median data can be used, resulting in rather poor 
velocity estimates. The effect of the weak velocity data 
measures could be reduced, if the average velocity is 
computed for a larger group of vehicles (Toth et al, 2004b). 
 

 
 

Figure 1. Vehicle close-up from LiDAR. 
 
3.2  Flow From frame Imagery 
 
Vehicle detection and tracking from reconnaissance and to a 
less extent conventional airborne surveying imagery has been 



 

a well-established research field for several decades. 
Developments have been mostly fueled by defense 
applications. Even a short overview of the available 
methods/techniques from this field would go beyond the size 
limitation of this paper. The approach we selected for our 
research is based on using orthorectified imagery. 
Furthermore, only medium format digital cameras, with a 
typical 4K by 4K sensor resolution were considered, such as 
the DSS system from Applanix. The image scale varied 
between 1:6,000 and 1:20,000 (in ground resolution terms, 
the GSD was in the 7-25 cm range). The creation of 
orthoimages imposes certain requirements, such as the 
availability of good surface data, either from a past mission 
or simultaneously acquired with the imagery and good direct 
sensor orientation data, but the benefits are irresistible. Most 
importantly, the vehicle shape in the horizontal footprint is 
preserved at true object scale. For overlapping images, the 
detection of moving vehicles (as well as any moving targets) 
can be accomplished by a simple image subtraction, as 
shown in Figure 2, while detection of non-moving vehicles is 
a much more complex task. Both processes can be supported 
by available road geometry data, such as road centerline or 
edge lines. Test images acquired from helicopter and fixed-
winged aircraft were used to monitor traffic flow over road 
segments and to determine turning volume at intersections. 
Results showed good performance for extracting moving 
vehicles (Grejner-Brzezinska et al, 2004; Paska and Toth, 
2004; Paska and Toth, 2005). Vehicle tracking, however, still 
needs more research, as the implemented solution produced 
unreliable results, which is partially due to the slow image 
acquisition rate (0.2-0.3 images/s) and/or lack of adequate 
overlap (Toth and Grejner-Brzezinska, 2004). 
 

 
 

Figure 2. Detecting moving objects in the ortho domain. 
 
3.3  Comparing Flow Data Obtained by LiDAR and 
Frame Imagery 
 
The performance of LiDAR and image based traffic flow 
extraction depends on a variety of factors, such as sensor 
specification, sensor platform, data acquisition pattern, 
sensor calibration, sensor inter-calibration, direct 
georeferencing performance and feature extraction 
performance that could be further broken down into vehicle 
detection, vehicle parameterization/classification, and 
velocity estimation. Ignoring the common and non traffic 
flow specific aspects, a simple performance matrix is 
provided in Table I, where the parameters reflect the 

cumulative results from a wide spectrum of airborne tests 
within a time span of about three years. The sensor 
instrumentation included older 10 kHz and 33 kHz LiDAR 
systems and a new ALTM 30/70, a BigShot 4K by 4K digital 
camera and DSS systems. The direct georeferencing of the 
imaging sensors was supported by several geodetic grade 
IMUs and GPS receivers. Table 1 is intended only for 
orientation purposes, as it cannot account for several factors 
of various flight and sensor configurations, such as LiDAR 
point density or image data rate/overlap, processing and 
interpretation details, such as feature extraction performance, 
image artifacts, or absolute vs. relative accuracy performance. 
Nevertheless, Table I clearly shows the main trends, namely, 
that LiDAR is very effective at vehicle extraction and coarse 
classification, but is less adequate for velocity estimation. 
Imagery has just the opposite pattern; it is less effective for 
vehicle extraction, but once vehicles are extracted and 
tracked, the velocity estimation is rather good. Since flow is 
the product of vehicle counts and velocity, the end results are 
comparable for both sensors. 
 

Sensor LiDAR Digital Camera 
Platform Airplane Airplane Helicopter 
Performance [%] [%] [%] 
Vehicle extraction    
Vehicles moving  95+ 90+ 95+ 
Vehicles not in 
motion 95+ 80+ 80+ 

Vehicle 
classification into 
three major classes 

 
99+ 

 
60+ 

 
70+ 

Vehicle tracking Not 
feasible <50 60+ 

Error (typical)    
Velocity estimation  20-40 <20 <10 
Flow computation  10-20 <10 < 5 

 
Table 1. Performance of various traffic flow extraction tasks 

with respect to sensors and platforms. 
 

4. COMBINING LIDAR AND IMAGERY 

The recent trend in airborne surveying, the simultaneous data 
acquisition of LiDAR with medium format digital camera, 
allows for the fusion of both the sensor-level data and the 
results/features extracted from the two datasets. As discussed 
in the previous section, both sensors are capable of providing 
vehicle counts and velocity estimates, however, in varying 
quality. Since their limitations and strengths are 
complementary, they can support each other and their fusion 
could lead to better traffic flow estimation. Therefore, the 
next step in our research should be to combine the LiDAR 
outstanding vehicle extraction performance with the 
excellent velocity estimation of the optical imagery. Thus, 
the objective of this discussion is to assess how the velocity 
of moving objects extracted from LiDAR can be better 
estimated by using imagery. 
 
To overcome the errors in the true vehicle length estimation 
in the LiDAR data due to generalization or possible 
misclassifications, the actual length of the vehicle must be 
determined from other sensory data, such as imagery 
collected simultaneously with the LiDAR data. Though a 
single image does not provide the absolute size information, 
the image may preserve the relative object size information, 
such as the width/height ratio of a vehicle. Although an extra 
effort, such as using an adequate matching technique, is 



 

required to identify the identical vehicles in the two datasets, 
the combination of the two datasets could eventually lead to 
an improved velocity estimation of the moving vehicles 
(Paska and Toth, 2005). 
 
Figure 3 shows extracted vehicles from LiDAR data, as they 
are overlaid on an orthoimage formed from a simultaneously 
acquired image. LiDAR vehicle points are represented in 
green and red, corresponding to the motion along or against 
the flying direction, respectively. For referencing, some static 
objects, such as one point on the centerline and points at the 
guard rail, are also marked in the figure. This figure 
illustrates: (1) the elongated (when vehicles are moving 
along the flying direction) and shortened (when vehicles are 
moving against the flying direction) lengths of the moving 
objects, as sensed by the LiDAR, and (2) the relationship 
between corresponding vehicles on the imagery and in the 
LiDAR data. The matches of the corresponding vehicles in 
the two datasets are highlighted by rectangles with identical 
colors. Due to the different nature of the two data acquisition 

techniques, the continuous scanning mode of the LiDAR 
sensor and instantaneous capturing of frame imagery, the 
locations and also the shapes of the corresponding vehicles 
differ in the two datasets. The white triangle in Figure 1 
shows the approximate location of the LiDAR beam when 
the image was taken. 
 
Vehicles can be sorted into four categories based on their 
direction and the relation of their positions in the LiDAR and 
imagery data: (1) vehicles traveling along the flying direction 
and scanned before the image acquisition (in Figure 1 they 
are in the upper lanes and to the right from the triangle sign), 
(2) vehicles traveling along the flying direction and scanned 
after the image acquisition (in Figure 2 they are to the left 
from the triangle sign), (3) vehicles traveling against the 
flying direction and scanned before the image acquisition (in 
Figure 1 they are in the lower lanes and to the right of the 
triangle sign), and (4) vehicles traveling against the flying 
direction and scanned after the image acquisition (in Figure 1 
they are to the left of the triangle sign).  

 

 
       (a) 

            
                                           (b)                                         (c) 

Figure 3. Vehicles extracted from the LiDAR data and overlaid on the orthoimage;  
(a) match of corresponding vehicles in the two datasets is marked with identical colors.  

Also shown are (b) vehicle elongation, and (c) vehicle shortening. 
 
Note that the LiDAR point clouds of the vehicles fall in front 
of the corresponding vehicles on the left side of the blue 
dotted line and behind the corresponding vehicles on the 
right side of the line. This is because the LiDAR measured 
the vehicle either before or after the image was taken. Based 
on the known relative positions of corresponding vehicles, 
search areas for a matching procedure can be determined. 
The acquisition time of each LiDAR point, as well as the 
image capture time, is recorded in GPS seconds. The possible 
relative distance between the image and LiDAR vehicle 
positions could be calculated from the vehicle velocity and 
the acquisition time of the image and the LiDAR vehicle 
points (coarse vehicle velocity approximations could be 
obtained from vehicle velocity computation from image 

sequences or the minimum and maximum speed limits of the 
actual road and so on). Note in Figure 3 that the relative 
distance between corresponding vehicles is getting larger the 
farther from the triangle sign. Similarly, the difference 
between the data acquisition time of the LiDAR sensor and 
digital camera is also getting larger. The difficulty of 
matching can be substantially reduced with higher image 
acquisition rates that can be easily achieved with modern 
digital cameras. Since the road surface, as well as the image 
sensor plane on the airborne platform is usually horizontal, 
the width/height ratio of a vehicle is fairly accurate with 
respect to, for example, the LiDAR point horizontal 
positional accuracy. Thus, the LiDAR-sensed vehicle width 



 

can be used to determine the vehicle true length by using the 
width/height ratio obtained from the image.  
 

5. PERFORMANCE EVALUATION  

To check the performance of the combined LiDAR and 
image traffic flow extraction, as well as validate the LiDAR 
only or image only estimates, a dedicated test flight was 
organized in late 2004. The Madison County, Ohio, test 
range that includes a dense network of permanently installed 
signalized ground controls to support airborne surveys was 
temporarily extended by using LiDAR-specific targets, 
shown in Figure 4, that could be also used for image control 
(Csanyi et al., 2005). In addition, there was a “moving” 
target, the OSU Center for Mapping GPSVan (He et al., 
1994), a vehicle equipped with high performance GPS/IMU 
hardware. This vehicle, shown in Figure 4, was constantly 
moving in the test area and was mapped by both sensors 
several times under various sensor settings, such as the 
LiDAR system was operated at various pulse rates during 
repeated passes over the calibration range. This served 
several purposes. Most importantly, the impact of the point 
density for the vehicle extraction, classification and velocity 
estimation was assessed. This also provided valuable data to 
assess the impact of the various pulse rates on the overall 
accuracy of the system, with and without ground controls. 
The airborne sensor suite included an ALTM 30/70 LiDAR 
system and a DSS digital camera. The LiDAR system was 
operated at 33, 50 and 70 kHz pulse rates, resulting in point 
densities ranging from 3 to 8 points/m2. The digital camera 
had a GSD range of 10-15 cm. 
 

 
 

Figure 4. LiDAR target and the GPSVan. 
 
Table 2 shows a representative set of measurements of the 
LiDAR sensor as it mapped the GPSVan at various pulse 
rates. As expected, the accuracy of the vehicle size, as 
measured by the smallest rectangle fitted to the vehicle 
points, depends on the point density, which, in turn, is 
basically a function of the pulse rate for a given flying 
height. Clearly, the vehicle width is fairly underestimated at 
lower point densities. The smaller size is a combined effect 
of the point density, laser pulse divergence and point pattern. 
The image measurements for the width/length ratios, 

however, show a good stability. The vehicle velocity 
estimates, shown in Table 3, illustrate that the larger error 
was introduced by the incorrect vehicle length. The GPSVan 
has a true length of 5.5 m but falls into the other vehicle 
category with a class length value of 4.7 m. This length could 
be effectively decreased by the vehicle length estimation 
from the LiDAR-measured width by using the image 
measured width/length ratio. The statistics, shown for the 
cases when the vehicle and the LiDAR traveled in the same 
direction (shaded area in Table 3) clearly indicate that 
accuracy of the true length-based velocity estimation can be 
achieved for the combined LiDAR and image solution. The 
opposite direction case has a smaller improvement, (with 
statistics of estimated bias and variance of 2.39 and 1.73, 
respectively). However, it is still important as it helps to 
obtain a better overall error in velocity when the average 
velocity of a group of vehicles is computed. Further 
discussion of the error characteristics of the LiDAR-based 
length and velocity estimation is in (Paska and Toth, 2005). 
 

6. SUMMARY 

Earlier research results demonstrated that airborne remote 
sensing based on state-of-the-art LiDAR and digital camera 
systems could provide valuable traffic flow data that can 
effectively support traffic monitoring and management. In 
particular, LiDAR has proven to be a good source of vehicle 
extraction and course classification, while digital imagery 
excels with better velocity estimation performance. In this 
paper, an initial analysis was provided to assess the overall 
performance gain in traffic flow estimation, if LiDAR and 
digital imagery were combined at the feature level.  
 
Vehicle velocity estimation from LiDAR is based on the 
vehicle elongation and shortening of the moving objects due 
to the scanning mode of the data acquisition. The accuracy of 
vehicle velocity estimation depends on the vehicle’s 
direction, true length, relative velocity between sensor and 
object, and on how accurately the true and LiDAR-sensed 
vehicle length could be estimated. The actual vehicle size is 
unknown in practice, and thus, the true length of the vehicles 
must be estimated from either the basic statistics of the 
vehicle categories, that can be determined after classifying 
the extracted vehicles, or by using additional information. To 
overcome the errors in the true vehicle length estimation due 
to generalization or possible misclassifications, the actual 
length of the vehicles was determined by using scale 
information from imagery collected simultaneously with the 
LiDAR. Initial results have shown that combining LiDAR 
with complementary sensor data, such as simultaneously 
collected imagery, can provide a better base for velocity 
estimation and thus allows for more reliable traffic flow 
parameter determination. 
 
This discussion in a broader sense addresses the problem of 
mapping moving objects, which is an emerging field in 
geospatial science. Obviously, transportation, and in 
particular, traffic management needs this data, but 
rapid/emergency mapping also demand this type of 
geospatial data acquisition and processing. Our investigations 
provide an insight into the difficulty of mapping moving 
objects and clearly indicate that only multisensory systems 
can adequately solve the problem of collecting high spatial 
and temporal resolution geospatial data in a preferable highly 
redundant manner. 
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5 33 10 0.52 0.50 2.9 + 8.37 1.81 8.87 51 2.95 5.34 
12 33 10 0.48 0.50 4.0 + 10.52 2.01 10.52 81 2.83 5.69 
9 33 20 0.71 0.70 1.8 - 3.40 1.59 4.02 15 2.85 4.53 
             

11 50 10 0.40 0.40 6.1 + 9.40 1.99 9.48 95 2.83 5.63 
13 50 20 0.55 0.65 3.2 + 9.70 1.86 10.33 51 2.91 5.41 
14 50 20 0.58 0.60 2.8 - 3.68 1.85 4.13 22 2.85 5.27 

             
10 50 20 0.55 0.55 3.1 0 5.25 1.72 5.55 27 2.97 5.11 

             
4 70 10 0.35 0.35 8.2 + 7.85 1.90 7.95 120 2.89 5.49 
8 70 20 0.50 0.50 4.1 - 3.89 1.88 4.10 31 2.84 5.34 
           2.88  
           0.05  

 
Table 2. Vehicle length and width measurement from LiDAR and length estimation based on combined LiDAR and image data. 

 

Vehicle velocity computed from different vehicle length measurements [m/s] GPS velocity 

Using vehicle class 
length (4.7 m) 

Derived from LiDAR width 
using image ratio  

True vehicle length  
(5.55 m) 

St
rip

 n
um

be
r 

Velocity Difference Velocity Difference Velocity Difference 

Reference 

5 19.75 -3.90 21.22 0.59 25.71 2.06 21.81 
12 23.85 -4.16 23.18 0.59 27.93 -0.08 23.77 
9 33.31 -0.18 17.51 2.45 20.14 -13.35 19.96 
        

11 21.94 -4.58 21.48 0.73 26.79 0.27 22.21 
13 21.71 -2.77 22.45 0.94 26.16 1.68 23.39 
14 26.85 3.37 22.83 -4.82 14.64 -8.84 18.01 
        

10 2.85 -5.15 1.33 -1.26 5.22 -2.78 0.07 
        
4 15.15 -5.28 15.55 -0.08 20.75 0.32 15.47 
8 23.11 7.87 20.18 -1.03 11.28 -3.96 19.15 
  4.14  0.58  0.88  
  0.93  0.32  0.91  

 
Table 3. Velocity estimation performance for various sensor settings for LiDAR-only and for combined LiDAR and image data. 
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